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Abstract

A new hyperchaotic system which has two large positive Lyapunov exponents is presented and physically imple-
mented. Spectral analysis shows that the system in the hyperchaotic mode has an extremely broad frequency bandwidth
of high magnitudes, verifying its unusual random nature and indicating its great potential for some relevant engineering
applications such as secure communications.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Hyperchaos characterized with more than one positive Lyapunov exponent (LE), has attracted increasing attention
from various scientific and engineering communities [1–3]. It is very important to generate hyperchaos with more com-
plicated dynamics as a model for theoretical research and practical implication. Hyperchaos firstly reported by Rössler
[4], and the first circuit implementation of hyperchaos was realized by Matsumoto et al. [5]. Lately, there has been con-
siderable interest in the study of hyperchaos generation by modifying and coupling the existing chaotic systems or
hyperchaotic systems. For example, to generate hyperchaos, Nikolov and Clodong [6] modified the Rössler hypercha-
otic system [4] and coupled two Chua’s circuits in [7]. Cafagna and Grassi [8,9] coupled three Chua’s circuits together to
obtain a new hyperchaotic attractor. Thamilmaran et al. [10] modified Chua’s circuit to present a new hyperchaotic
system. Recently, Li et al. [11,12] also obtained a hyperchaotic systems by modifying two existing chaotic systems.
However, there exist some common problems in most existing hyperchaotic systems, i.e. the two positive LEs simulta-
neously appear in a very narrow parameter range and their values are relatively small, especially for the first positive LE
[4–12].

Recently, we proposed a 3-D chaotic system [14] and a 4-D chaotic system [15]. Some complicated dynamical behav-
iors, bifurcation analysis and circuit implementation of the 4-D chaotic system were investigated and controlled [16–18].
In this paper, we propose a new hyperchaotic system, called Qi hyperchaotic system. We will show that the system has
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two very large positive LEs over very wide parameter regions, implying that system orbits extensively expand in some
directions but rapidly shrink in some other directions, which significantly increase the system’s orbital degree of disor-
der and randomness, and is very desirable for engineering applications such as secure communications. The electronic
circuit realizing the Qi hyperchaotic system is implemented and demonstrated.
2. The new 4-D hyperchaotic system

Consider the following new 4D dynamical system (called Qi hyperchaotic system):
_x1 ¼ aðx2 � x1Þ þ x2x3;

_x2 ¼ bðx1 þ x2Þ � x1x3;

_x3 ¼ �cx3 � ex4 þ x1x2;

_x4 ¼ �dx4 þ fx3 þ x1x2:

ð1Þ
Here, xi(i = 1,2,3,4) are state variables and a, b, c, d, e, f are positive constant parameters.
Fig. 1 indicates the LE spectrum with b 2 [15.425,27], and a = 50 c = 13, d = 8, e = 33, f = 30. One can observe that

there are two positive LEs over quite a wide range of parameter values. As the parameter b varies, as shown in Fig. 1,
the first LE is very large with l1 2 [8.3585,13.4632], the second LE is quite large with l2 2 [0.1,3.4781], the third LE is
approximately zero, and the forth LE is negative with l4 < � 60.

The leading LE is less than 2 for most existing hyperchaotic systems, namely l1 2 [0.11,1.7] in [4–9,11,12]. The sec-
ond largest LE is also relatively small with l2 2 [0.02,0.18] in [4–8,10–12]. However, the leading LE l1 of the Qi hyper-
chaotic system here is notably as large as 13.4632. Similarly, the second largest LE is considerably large and positive,
with a value up to 3.4781. The exponential expansions of an attractor with positive LEs are incompatible with motions
on a bounded space unless there are many folds. The values of the leading LE and the second LE imply an exponential
rate of stretching and folding, i.e. el1t and el2t, in two different directions, as the orbit moves. This is a good measure as
how chaotic the attractor is [13]. For comparison, suppose a hyperchaotic system with two positive LEs, l1 = 0.6,
l2 = 0.1. Then, the rates of stretching and folding of the Qi hyperchaotic system with l1 = 13.4632 and l2 = 3.478, will
be n times and m times faster than that of the assumed hyperchaotic system, where
n ¼ e13:4632t

e0:6t
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Fig. 1. The Lyapunov exponent spectrum versus b, with a = 50 c = 13, d = 8, e = 33, f = 30.



Fig. 2. The comparison of frequency spectra.
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Many proposed chaos-based encryption schemes have been totally or partially broken by different attacks. One reason
is that the degree of randomness of simple chaotic or hyperchaotic signals used therein are not high enough, as reflected
by the narrow high-magnitude bandwidths of those signals [19–21].
3. Analysis of frequency spectrum

Fig. 2a shows the frequency spectra of the Lorenz system. For comparison, the Runge–Kutta method was used to
solve all systems, all with sampling time 0.0002(s), running time 0–500 (s), number of spectral averages 100, and all
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Fig. 3. The diagram of implementation of the Qi hyperchaotic system, where R1, R2, R3, R4, R5, R6, R8, R9, R11, R12, R13, R15,
R17, R18, R23, R25, R26, R30, R32, R33 = 10k; R16, R24, R31 = 100k; R7 = 20k; R14 = 4.17k; R21 = 7.69k; R22 = 3.03k;
R28 = 3.33k; R29 = 12.5k; R10 = 500X; R19, R20, R27 = 100X; Ci = 5 (nF), i = 1, . . ., 4.
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spectra are normalized, where only the frequency ranges with spectral values over 10�1 are considered. The high-mag-
nitude bandwidths of the Lorenz system, the Chua circuit and the Rössler hyperchaotic system are all less than 4 Hz
numerically. Some hyperchaotic systems also have narrow high-magnitude spectral bandwidths. For example, Li
et al. [12] presented a hyperchaotic system with positive LEs l1 = 0.5011, l2 = 0.1858, with the frequency spectral band-
width less than 4.5 Hz. Therefore, the chaotic signals cannot be used to sufficiently mask the messages in real commu-
nication applications. Once intercepted, there is a high possibility that the messages can be extracted.

In practice, the frequency of the analog signal of a chaotic system can be extended to several kHz, even several MHz,
therefore 4 Hz is essentially useless. To compare, only the bandwidths of the signals generated numerically by the
Fig. 4. The phase portraits of the Qi hyperchaotic system observed on the oscilloscope, with a = 50, b = 24, c = 13, d = 8, e = 33,
f = 30.
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system itself are discussed here, without investigating possible electronic techniques that may somewhat improve the
bandwidths of such chaotic systems including the new system.

When taking the parameters a = 50, c = 26,d = 8, e = 33, f = 30 in the Qi hyperchaotic system, there are two posi-
tive LEs, l1 = 13.4632, and l2 = 3.478. The frequency spectra of the signals x1 and x2, generated numerically from the Qi
hyperchaotic system, are shown in Fig. 2b. Note that the high-magnitude bandwidth of signal x1 is 100 Hz, which is
more than 20 times wider than that of all the other systems mentioned above. One can see that the frequency property
of the Qi hyperchaotic system is indeed exhibiting very strong randomness. In fact, the strong random property is also
confirmed and demonstrated by the following circuit implementation.
4. Circuit implementation

Fix the parameter b = 24. Then, the LEs are [l1, l2, l3, l4] = [12.3981,2.2944,�0.0009,�61.6578].
As shown in Fig. 3, an electronic circuit has been designed and built to realize system (1) with 4 channels to perform

the integration of the four state variables, x1, x2, x3, x4, respectively.
Fig. 4 shows the experimental results observed on an oscilloscope. It can be seen that: (1) the orbits are more com-

plicated and disordered than the ordinary chaotic and hyperchaotic ones; (2) the attractors have very irregular forms,
neither butterfly nor scroll ones, which are visually more complex than ordinary chaotic attractors.
5. Conclusions

In this paper, we have mathematically constructed and electronically built the Qi hyperchaotic system. The Lyapu-
nov exponent spectrum of the Qi hyperchaotic system, particularly its leading and second LEs, shows that the system is
a truly hyperchaotic one within a large parameter range, giving the system very strong randomness, a high degree of
disorder and extremely rich dynamics. More importantly, the frequency spectral analysis demonstrates that the new
system hyperchaos exists over an extremely broad high-magnitude bandwidth, which is very desirable for some engi-
neering applications such as secure communications.
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