Item

A 3-D four-wing attractor and its analysis.

Wang, Zenghui
Sun, Yanxia
Van Wyk, Barend Jacobus
Qi, Guoyuan
Van Wyk, Michael Antonie
Citations
Altmetric:
Abstract
In this paper, several three dimensional (3-D) four-wing smooth quadratic autonomous chaotic systems are analyzed. It is shown that these systems have a number of similar features. A new 3-D continuous autonomous system is proposed based on these features. The new system can generate a four-wing chaotic attractor with less terms in the system equations. Several basic properties of the new system is analyzed by means of Lyapunov exponents, bifurcation diagrams and Poincare maps. Phase diagrams show that the equilibria are related to the existence of multiple wings.
Description
Date
2009-09-01
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Research Projects
Organizational Units
Journal Issue
Keywords
Chaos, Chaos, Four-wing attractor, Lyapunov exponents, Bifurcation.
Citation
Embedded videos