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Abstract This paper recovers gap solitons from Bragg 
gratings of the concatenation model. The new mapping 
method recovers a full spectrum of optical solitons. The 
parameter constraints for the existence of such solitons are 
enumerated.
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Introduction

A considerable amount of advances have been made with the 
concatenation model ever since its inception during 2014 [1, 2]. 

This model is a combination of the three well known equations 
that are individually considered and frequently talked about 
in fiber optics [3, 4]. They are the nonlinear Schrödinger’s 
equation (NLSE), Lakshmanan–Porsezian–Daniel (LPD) 
equation and the Sasa–Satsuma equation (SSE) [5, 6]. 
The model was first proposed about a decade ago [7, 8]. 
Thereafter, a wide range of results have followed through 
for this model [9, 10]. These include the identification of the 
conservation laws, addressing the model using several forms of 
integration algorithms including undetermined coefficients and 
Kudryashov’s approaches [11]. The current paper moves over 
to the next phase of the project. This work is to address gap 
solitons that emerge from the Bragg gratings structure which 
is introduced to compensate for the low count of CD. These 
gap solitons are thus retrieved from the model equation by 
the application of the new mapping method. A full spectrum 
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of gap solitons are revealed for the model in Bragg gratings. 
The soliton solutions are thus enumerated and the parameter 
restrictions that appear as constraints are also enumerated. The 
details of the integration scheme as well as the mathematical 
derivation procedure are presented in details and are exhibited 
in the rest of the paper.

Mathematical model

The expression of the concatenation model for polarization-
preserving fibers can be summarized as follows:

In Equation (1), the variable �(x, t) represents the complex 
wave profile, where x corresponds to the spatial component 
and t represents the temporal component. a represents the 
CD term, b and �6 represent the self-phase modulation 
(SPM) coefficients. Next, �1 and �7 are the coefficients 
of third–order dispersion (3OD) and the fourth–order 
dispersion (4OD), respectively. Finally, the coefficients 
�2, �3, �8 and �9 imply the additional nonlinear effects, 
while the coefficients �4 and �5 give the nonlinear dispersive 
effects.

For fiber Bragg gratings, Eq. (1) is split into two separate 
components as:

 and

 The constrants aj , bj , cj , bj1 , bj2 , dj1 , dj2 , ej1 , ej2 , fj1 , fj2 , gj1 , 
gj2 , hj1 , hj2 , hj3 , kj1 , kj2 , lj1 , lj2 , �j , �j and �j, (j = 1, 2) are param-
eters, while, q(x, t) , r(x, t) are the complex wave profiles. 
Respectively, the coefficients aj , bj and cj are CD, 3OD 
and 4OD terms along the two components. Next, bj1 and 
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hj1 are the SPM terms, while bj2, hj2 and hj3 are the cross-
phase modulation (XPM) effect. The coefficients �j, �j and 
�j give inter-modal dispersion (IMD), detuning parameter 
and four–wave mixing effect (4WM) for Kerr part of the 
nonlinearity, respectively. Finally, the coefficients dj1 , dj2 , ej1 
and ej2 , give the nonlinear dispersive effects and the remain-
ing coefficients give the effect of additional dispersions. The 
concatenation model integrates these three equations into a 
unified framework, offering a comprehensive and precise 
depiction of soliton behavior in Bragg grating fibers. This 
model proves valuable in various applications within fiber 
optic communication systems, where solitons play a crucial 
role in transmitting information over long distances while 
experiencing minimal distortion.

The primary objective of this article is to utilize a new 
mapping method in order to identify the dark, bright, and 
singular soliton solutions, as well as the combined bright-
singular soliton solutions, for Eqs. (2) and (3).

The structure of this article can be outlined as follows: 
Section  Preliminary analysis provides a mathema4tical 
analysis. Section New mapping method presents the solutions 
of Eqs. (2) and (3) utilizing the new mapping method. 
Finally, in Section Results and discussion, the conclusions are 
presented and discussed.

Preliminary analysis

In this section, we assume that the solutions for Eqs. (2) and 
(3) are given by:

(4)
q(x, t) = �1(�) exp [iZ(x, t)],

r(x, t) = �2(�) exp [iZ(x, t)],
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and

Assuming that v, �,� and �0 are all non-zero parameters, 
where v represents the soliton’s velocity, � denotes its wave 
number, � represents its frequency, and �0 is the phase 
constant, we have real functions �1(�),�2(�) and Z(x, t) 
that represent the amplitude and phase components of the 
soliton, respectively. By substituting Eqs. (4) and (5) into 
Eqs. (2) and (3) and separating their real and imaginary 
parts, we can infer that:

and

Set

provided � ≠ 0, 1. Now, Eqs. (6)–(9) become
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By equating the coefficients of the linearly independent 
functions in Eqs. (13) and (14) to zero, we obtain:
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Equations (11) and (12) exhibit identical forms, under the 
following constraint conditions:

From (15)–(18), one derives the following:
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In the upcoming section, we will employ the following 
approach to solve equation (20).

New mapping method

We make the assumption that Eq. (20) possesses the 
following formal solution:

In this context, Ψ(�) is subject to the following first-order 
ordinary differential equation (ODE):

The arbitrary constants �m (where m ranges from 0 to 2N), 
r, p, h,  and s need to be determined, with the condition that 
�2N ≠ 0 and s ≠ 0 . It is widely recognized that the solutions 
of Eq. (23) take on the following forms:
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Form-3: Assuming that r = 0 , Eq. (23) exhibits the 
following solutions:

(I): Soliton solutions:

and

(II): Bright solitons:

(III): Singular solitons:

(26)Ψ(𝜁) =

�
−2p

h

�
1 + tanh

�
𝜖
√
p𝜁

��
, p > 0, h < 0.

(27)Ψ(𝜁) =

�
−2p

h

�
1 + coth

�
𝜖
√
p𝜁

��
, p > 0, h < 0.

(28)Ψ(𝜁) =

����� −6ph sech2
�√

p𝜁
�

3h2 − 4ps
�
1 + 𝜖 tanh

�√
p𝜁

��2 , p > 0,

(29)Ψ(𝜁) =

����� 6pq2 csch
2
�√

p𝜁
�

3h2 − 4ps
�
1 + 𝜖 coth

�√
p𝜁

��2 , p > 0,

(30)Ψ(𝜁) =

���� −6p sech2
�√

p𝜁
�

3h + 4𝜖
√
3ps tanh

�√
p𝜁

� , p > 0, s > 0,

(31)Ψ(𝜁) =

���� 6p csch2
�√

p𝜁
�

3h + 4𝜖
√
3ps coth

�√
p𝜁

� , p > 0, s > 0.

(32)

Ψ(𝜁) = 2

�
3p

𝜖
√
9h2 − 48ps cosh

�
2
√
p𝜁

�
− 3h

, p > 0, 9h2 − 48ps > 0.
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where � = ±1.

With this aim, we first balance �(4)

1
 and �5

1
 in Eq. (20), one 

deduces the balance number N = 1 . Consequently, Eq. (20) 
reveals the formal solution:

where the constants �0, �1 and �2 need to be determined, 
assuming that �2 ≠ 0 . By substituting (34) and (23) into Eq. 
(20), the result is a set of algebraic equations as follows:

According to the used method, one arrives at the following 
solutions for Eqs. (2) and (3):

Set-1: By assigning the values s = 3 h2

16p
 and r = 16p2

27 h
 to the 

algebraic equations obtained in (35), and utilizing the 
Maple software to solve them, the following outcomes are 
obtained:

(33)
Ψ(𝜁) = 2

�����
3p

𝜖

�
−
�
9h2 − 48ps

�
sinh

�
2
√
p𝜁

�
− 3h

,

p > 0, 9h2 − 48ps < 0.

(34)�1(�) = �0 + �1Ψ(�) + �2Ψ
2(�),

(35)

4Δ2�
3

2
s + 8Δ3�

3

2
s + 128 �2s

2 + 3Δ6�
5

2
= 0,

16Δ3�
2

2
�0s + 6Δ2�

3

2
h + 15Δ6�0�

4

2
+ 9Δ3�

3

2
h

+240�2hs + 4Δ2�
2

2
�0s = 0,

3Δ5�
3

2
+ 12Δ2�

3

2
p + 320 �2ps + 6Δ2�

2

2
�0h

+12Δ3�
3

2
p + 8Δ1�2s + 90 �2h

2

+18Δ3�
2

2
�0h + 30Δ6�

2

0
�3
2

+8Δ3�2�
2

0
s = 0,

8Δ3�
2

2
�0p + 4Δ2�

2

2
�0p + 2Δ3�

3

2
r + 60 �2ph

+4Δ2�
3

2
r + 10Δ6�

3

0
�2
2

+3Δ1�2h + 80 �2rs + 3Δ3�2�
2

0
h + 3Δ5�0�

2

2
= 0,

4Δ3�2�
2

0
p + Δ4�2 + 36 �2rh + 4Δ3�

2

2
�0r

+16 �2p
2 + 4Δ1�2p

+4Δ2�
2

2
�0r + 5Δ6�

4

0
�2 + 3Δ5�

2

0
�2 = 0,

+2Δ3�2�
2

0
r + Δ4�0 + Δ5�

3

0
+ Δ6�

5

0

+8 �2rp + 2Δ1�2r = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and

By substituting (36) into (34) and employing (24) and (25), 
the bright soliton solutions of Eqs. (2) and (3) can be derived 
as follows:

The solutions (38) and (39) meet the requirements specified 
by the constraint conditions (37).

Figure 1 and 2 represent the surface plot, contour plot 
and 2D plot of bright soliton (38). The parameter values 
that have been chosen are:

(36)

�0 = �Δ1

√
3

2Δ5 − Δ1Δ3

, �1 = 0,

�2 = �h

√
3

2Δ5 − Δ1Δ3

, p =
1

2
Δ1, h = h,

(37)

Δ2 =
2Δ1Δ3 − 5Δ5

Δ1

, Δ4 =
5Δ2

1
Δ5

18
(
Δ1Δ3 − 2Δ5

) ,

Δ6 =
Δ5

(
Δ1Δ3 − 2Δ5

)

2Δ2
1

,

provided 𝜖 = ±1, 2Δ5 − Δ1Δ3 > 0, and Δ1 ≠ 0.

(38)

q(x, t) = ±Δ1

�
1

3
�
2Δ5 − Δ1Δ3

�

⎡⎢⎢⎢⎢⎣
1 +

6

1 + 2� cosh

��
2Δ1

3
(x − vt)

�
⎤⎥⎥⎥⎥⎦
e i(−�x+�t+�0),

(39)

r(x, t) = ±𝜒Δ1

�
1

3
�
2Δ5 − Δ1Δ3

�

⎡⎢⎢⎢⎢⎣
1 +

6

1 + 2𝜖 cosh

��
2Δ1

3
(x − vt)

�
⎤⎥⎥⎥⎥⎦
e i(−𝜅x+𝜔t+𝜃0),

provided Δ1 > 0, and 2Δ5 − Δ1Δ3 > 0.
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Fig. 1  Profile of a bright soliton solution
Fig. 2  Profile of a dark soliton solution
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Set–2: By assigning the values s = 3 h2

16p
 and r = 0 to the 

algebraic equations obtained in (35), and utilizing the 
Maple software to solve them, the following outcomes are 
obtained:

and

By substituting (40) into (34) and employing (26) and (27), 
the dark and singular soliton solutions of Eqs. (2) and (3) 
can be derived as:

(40)

�0 = −2�Δ1

√
−

1

10Δ5 + Δ1Δ3

, �1 = 0,

�2 = 10�h

√
−

1

10Δ5 + Δ1Δ3

, p = −
1

20
Δ1, h = h,

(41)

Δ2 = −
3
(
Δ1Δ3 + 5Δ5

)
Δ1

, Δ4 =
4

25
Δ2

1
,

Δ6 =
150Δ2

5
+
(
5Δ5 − Δ1Δ3

)
Δ1Δ3

100Δ2
1

,

provided 𝜖 = ±1, 10Δ5 + Δ1Δ3 < 0, and Δ1 ≠ 0.

(42)

q(x, t) = �Δ1

√
−

1

10Δ5 + Δ1Δ3[
1 − tanh

(√
−
Δ1

20
(x − vt)

)]
ei(−�x+�t+�0),

(43)

r(x, t) = ��Δ1

√
−

1

10Δ5 + Δ1Δ3[
1 − tanh

(√
−
Δ1

20
(x − vt)

)]
ei(−�x+�t+�0),

and

The solutions (42)–(45) meet the requirements specified by 
the constraint conditions (41).

Set-3: By assigning the value r = 0 to the algebraic 
equations obtained in (35), and utilizing the Maple software 
to solve them, the following results are revealed:

and

By substituting (46) into (34) and employing (28)–(33), the 
following solutions of Eqs. (2) and (3) can be derived as 
follows:

(I) Bright–Singular straddled solitons:

(44)

q(x, t) =�Δ1

√
−

1

10Δ5 + Δ1Δ3[
1 − coth

(√
−
Δ1

20
(x − vt)

)]
ei(−�x+�t+�0),

(45)

r(x, t) =𝜖𝜒Δ1

√
−

1

10Δ5 + Δ1Δ3[
1 − coth

(√
−
Δ1

20
(x − vt)

)]
ei(−𝜅x+𝜔t+𝜃0),

respectively, provided 10Δ5 + Δ1Δ3 < 0, and Δ1 < 0.

(46)

�0 = 0, �1 = 0, �2 =
30�h√

(4Δ2 + 3Δ3)Δ1 − 30Δ5

,

p = −
1

20
Δ1, s = −

45h2
�
2Δ2 + 3Δ3

�
�
4Δ2 + 3Δ3

�
Δ1 − 30Δ5

, h = h,

(47)

Δ4 =
4

25
Δ1

2, Δ6 =
1

300

(
2Δ2 + 3Δ3

)(
Δ2 + 4Δ3

)
,

provided 𝜖 = ±1, and (4Δ2 + 3Δ3)Δ1 − 30Δ5 > 0.

(48)q(x, t) =
±12Δ1

√
(4Δ2+3Δ3)Δ1−30Δ5

[(2Δ2−3Δ3)Δ1−60Δ5]
�
cosh

�√
−

Δ1

5
(x−vt)

�
+�

�
−3Δ1(2Δ2+3Δ3)

�
sinh

�√
−

Δ1

5
(x−vt)

�
−�

� ei(−�x+�t+�0),

(49)r(x, t) =
±12�Δ1

√
3Δ3Δ1+4Δ1Δ2−30Δ5

[(−3Δ3+2Δ2)Δ1−60Δ5]
�
cosh

�√
−

Δ1

5
(x−vt)

�
+�

�
−3Δ1(2Δ2+3Δ3)

�
sinh

�√
−

Δ1

5
(x−vt)

�
−�

� ei(−�x+�t+�0),

(50)
for

�
4Δ2 + 3Δ3

�
Δ1 − 30Δ5 > 0, Δ1(2Δ2 + 3Δ3) > 0; and Δ1 < 0,

q(x, t) =
±6Δ1√

(3Δ3+4Δ2)Δ1−30Δ5

�
cosh

�√
−

Δ1

5
(x−vt)

�
+𝜖

�
+

√
3Δ1(2Δ2+3Δ3) sinh

�√
−

Δ1

5
(x−vt)

� ei(−𝜅x+𝜔t+𝜃0),
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(II) Bright solitons:

(III) Singular solitons:

The solutions (48)–(55) meet the requirements specified by 
the constraint conditions (47).

Results and discussion

Figure 1 depicts the evolution of a bright soliton solution 
q(x,  t), characterized by the complex-valued solution 
(38), through surface plots, contour plots, and 2D plots. 
The soliton dynamics are analyzed over a temporal range 
from t = 2 to t = 3 , with intervals of 0.2. The parameters 
governing the system are set to specific values: � = 2 , 
� = 1.1 , �1 = 3.2 , �1 = 1.3 , �2 = 2.4 , a1 = 0.5 , a2 = 1.6 , 
b1 = 0.7 , b2 = 1.8 , c1 = 1.9 , c2 = 2 , b11 = 2.1 , b12 = 2.2 , 
c11 = 0.3 ,  c12 = 2.4 ,  d11 = 0.5 ,  d12 = 2.6 ,  e11 = 2.7 , 
e12 = 2.8 , f11 = 0.9 , f12 = −1.1 , g11 = −1.2 , g12 = −1.3 , 
k11 = −2.4 , k12 = −0.5 , l11 = −2.6 , l12 = −0.7 , c21 = −3.8 , 
and c22 = −0.9 .. The surface plot illustrates the spatial 
distribution of the soliton solution q(x, t) over the domain 
x and t, revealing the propagation and behavior of the 

(51)
r(x, t) =

±6𝜒Δ1√
(3Δ3+4Δ2)Δ1−30Δ5

�
cosh

�√
−

Δ1

5
(x−vt)

�
+𝜖

�
+

√
3Δ1(2Δ2+3Δ3) sinh

�√
−

Δ1

5
(x−vt)

� ei(−𝜅x+𝜔t+𝜃0),

whenever
�
4Δ2 + 3Δ3

�
Δ1 − 30Δ5 > 0, Δ1

�
2Δ2 + 3Δ3

�
> 0, and Δ1 < 0.

(52)q(x, t) =
±6Δ1√

−2[(3Δ3+Δ2)Δ1+15Δ5] cosh
�√

−
Δ1

5
(x−vt)

�
−

√
(3Δ3+4Δ2)Δ1−30Δ5

e i(−�x+�t+�0),

(53)
r(x, t) =

±6𝜒Δ1√
−2[(3Δ3+Δ2)Δ1+15Δ5] cosh

�√
−

Δ1

5
(x−vt)

�
−

√
(3Δ3+4Δ2)Δ1−30Δ5

e i(−𝜅x+𝜔t+𝜃0),

provided
�
3Δ3 + Δ2

�
Δ1 + 15Δ5 < 0, and Δ1 < 0.

(54)q(x, t) =
±6Δ1√

2[(3Δ3+Δ2)Δ1+15Δ5] sinh
�√

−
Δ1

5
(x−vt)

�
−

√
(3Δ3+4Δ2)Δ1−30Δ5

e i(−�x+�t+�0),

(55)
r(x, t) =

±6𝜒Δ1√
2[(3Δ3+Δ2)Δ1+15Δ5] sinh

�√
−

Δ1

5
(x−vt)

�
−

√
(3Δ3+4Δ2)Δ1−30Δ5

e i(−𝜅x+𝜔t+𝜃0),

as long as
�
3Δ3 + Δ2

�
Δ1 + 15Δ5 > 0 and Δ1 < 0.

soliton. The contour plot provides further insight into the 
soliton’s profile, highlighting regions of different intensity. 
Additionally, the 2D plot offers a concise representation of 
the soliton’s evolution at specific time points. The observed 
evolution of the bright soliton solution demonstrates 
characteristic features such as wavepacket localization and 
preservation of shape over time. As time progresses, the 
soliton maintains its structure while propagating through 
the medium. The interplay of the system parameters 
influences the soliton’s behavior, including its speed and 
stability. The prescribed parameter values contribute to the 
observed dynamics, with each parameter exerting specific 
effects on the soliton’s evolution. Figure 2 presents the 
evolution of a dark soliton solution q(x, t), described by 
the complex-valued solution (42), through surface plots, 
contour plots, and 2D plots. Similar to Fig. 1, the temporal 
evolution is analyzed over the interval from t = 2 to t = 3 , 
with increments of 0.2. The same set of parameters as in 
Fig. 1 is employed to govern the system dynamics. The 
surface plot, contour plot, and 2D plot in Fig. 2 provide 
visual representations of the dark soliton’s behavior and 
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evolution. The surface plot captures the spatiotemporal 
dynamics of the soliton, highlighting its characteristic 
depression within the medium. The contour plot offers 
detailed information on the soliton’s intensity profile, 
while the 2D plot succinctly illustrates its evolution at 
discrete time points. The dark soliton solution exhibits 
distinct features compared to its bright counterpart, 
characterized by a localized intensity minimum within the 
medium. As time progresses, the dark soliton maintains 
its shape and travels through the medium, albeit with 
different dynamics influenced by the system parameters. 
The specific parameter values chosen for this analysis 
play a crucial role in shaping the dark soliton’s evolution, 
influencing its speed, depth, and stability. As a result, 
Figs. 1 and 2 provide valuable insights into the evolution 
of bright and dark soliton solutions, respectively, under 
the specified parameter regime. The visualizations offer 
a comprehensive understanding of the soliton dynamics 
and highlight the influence of system parameters on 
their behavior. These findings contribute to the broader 
understanding of soliton phenomena and their potential 
applications in various physical systems.

Conclusions

The current paper has moved the literature of the concatena-
tion model one step forward. The model has been applied 
to Bragg gratings that led to the emergence of the gap soli-
tons. A full spectrum has been recovered. The new mapping 
method has made the revelation possible and a reality. Thus, 
the crisis of low CD has been overcome for the concatena-
tion model with the introduction of Bragg gratings. Hence, 
another chapter from this concatenation model is now com-
plete. It is now time to venture into additional aspects of the 
model. Several issues are yet to be explored. These range 
from the control of Internet bottleneck effects, a study of the 
model in dispersion flattened fibers, moving over to disper-
sive concatenation model and their corresponding follow–up 
concepts. Therefore, a plethora of grounds are yet to be cov-
ered. The results of such promising projects are sequentially 
going to be disseminated across a wide range of outlets after 
getting these results aligned with the pre–existing works [5].
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