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Preface

We are pleased to publish a collection of papers presented at the 18th Global Conference
on Sustainable Manufacturing (GCSM), held on October 5–7, 2022, in Berlin, Germany.
The conference is annually sponsored by the International Academy for Production
Engineering (CIRP), committed to excellence in the creation of sustainable products and
processes. GCSM 2022 was jointly organized by the Institut für Werkzeugmaschinen
und Fabrikbetrieb (IWF/TU Berlin) and Fraunhofer Institut für Produktionsanlagen und
Konstruktionstechnik (IPK).

The GCSM 2022 brought together more than 149 attendees from 25 countries provid-
ing a global forum of academics, researchers, and specialists from universities, research
institutes, and industry from across the globe, working on topics related to sustainable
manufacturing. A unique feature of the GCSM conference series is its integration of
industrial engineering perspectives, sustainable manufacturing applications in emerging
and developing countries, as well as education and workforce development for advancing
sustainable manufacturing. Plenary keynote speeches by experienced personalities from
academics and industry, paper sessions presentations, and workshops of student teams
from different countries offered new insights and chances for exchange of ideas. The
conference featured twelve keynote speakers who shared recent advances in cutting-edge
research and industry practices; these prominent and internationally recognized experts
elaborated how technologies in the product, process, and system domains can enable
sustainable manufacturing.

This volume documents more than 120 contributions presented at GCSM 2022 in 22
sessions held over three days. The proceedings are organized according to the confer-
ence program classi�ed into four broad categories as: Sustainable Processes, Sustainable
Manufacturing Systems, Sustainable Manufacturing Products, and Crosscutting Topics
in Sustainable Manufacturing. The papers cover a variety of topics in these areas related
to modeling and simulation of manufacturing processes, product design for sustainabil-
ity, metrics for sustainability assessment, energy ef�ciency in manufacturing, strategies
and business models, as well as education and workforce development for sustainable
manufacturing. All papers published in these proceedings have been reviewed by experts
from the international scienti�c committee.

In addition to keynotes and paper sessions, a session on student projects was included
in the GCSM 2022 program to further its mission, by involving the younger on the
challenges of sustainable manufacturing. Students from different countries exchanged
their perspectives on how to tackle the “Sustainable Development Goals” of the United
Nations, by presenting and discussing concrete projects.

Holger Kohl
Franz Dietrich

Günther Seliger
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3D-Printed MWF Nozzles for Improved Energy
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Abstract. Particularly during grinding of metal workpieces, a high energy con-
sumption is required during the main process times, so that the resulting energy
costs represent a signiÞcant amount of the total operating costs of the machine
tool. In this context, the supply of metal working ßuids (MWF) during the grinding
process is often associated with a high energy consumption, but the MWF supply
strategy (MWF ßow rate, MWF nozzle, control and dimensioning of the MWF
supply pumps) can signiÞcantly inßuence the energy efÞciency of such processes.
In the scope of this work, additive manufacturing was used to produce ßuid supply
nozzles adapted to the respective grinding process. In this work, it was shown that
by using a ßow-optimized nozzle the required power of the MWF supply pump
can be signiÞcantly reduced, allowing to make the grinding process more efÞcient
in terms of the energy required.

Keywords: Grinding· MWF supply· Energy efÞciency· Additive
manufacturing

1 Introduction

For the evaluation of production facilities and manufacturing processes with regard
to energy efÞciency, the speciÞc energy is a useful parameter, since it can be used to
describe the ratio of the energy input to a suitable functional unit of the product or service
[1Ð3]. Thus, the energy consumption at the machine tool during steel manufacturing is
considered and energy-saving solutions are derived from it. Based on the knowledge
of the energy consumption of individual machine tools, energy efÞcient process chains
can be designed [4]. For an objective evaluation of the energy efÞciency, however,
the applicability of the respective manufacturing process for achieving the required
workpiece properties must be taken into account [3, 5, 6].

In grinding processes, the speciÞc grinding energy Ð the ratio of the spindle power
to the material removal rate Ð provides information about the energy consumption at
the grinding spindle during the machining of a material volume unit and can therefore
be used to evaluate the energy efÞciency of the machining process during grinding. A
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process optimization, which enables a reduction of the process forces or the spindle
power at a constant material removal rate, leads to a decrease of the speciÞc grinding
energy and thus to an increase of the energy efÞciency of the grinding process [7Ð9].

During the machining process, the total energy consumption of the machine tool
results from the energy demand of the individual modules involved in the process. Thus,
the energy consumption is inßuenced by the equipment of the machine tool or by the
energy efÞciency of individual modules. In this context, it should be noted that the
largest energy consumer on a machine tool (machining center or grinding machine) is
usually the metalworking ßuid (MWF) supply system, so that a signiÞcant potential for
increasing energy efÞciency can be seen here [10].

During the grinding machining of metal workpieces with conventional and high-
hardness grinding tools, ßuid supply in ßood mode remains the most commonly used
type of ßuid supply in the industry, due to strong heat generation in the grinding contact
zone or a high risk of thermal workpiece damage. By optimizing the ßuid supply, the
achievable material removal rate and the workpiece quality can be increased on the one
hand, and on the other hand the required ßuid ßow rate and thus the energy consumption
of the ßuid system can be reduced. This increases the energy efÞciency of the process
and the grinding machine [7]. A signiÞcant factor for ßuid optimization is the shape of
the nozzle, which, in addition to the shape of the ßuid jet, inßuences the energy required
for ßuid supply. Savings in the energy consumption of ßuid supply pumps of more
than 50% can be achieved without compromising the ßuid jet shape and thus the cooling
lubrication of the grinding contact zone, whereby the use of frequency-controlled pumps
is required [11].

In the context of this work, this aspect is addressed in the following and the use of
additive manufacturing for nozzle production is investigated. Due to the many degrees
of freedom that additive manufacturing brings along, complex internal geometries and
internal structures can be realized, which can positively inßuence the shape of the jet and
thus the energy efÞciency of the entire grinding process. The aim of the investigation
presented here is to compare the different nozzle geometries and to evaluate them with
regard to energy efÞciency.

2 Materials and Methods

2.1 MWF Supply Nozzles

In this work, two reference nozzles (modular and needle nozzle) were compared with
two ßow-optimised printed nozzles and evaluated with regard to their performance in
the grinding process and their energy efÞciency.

The modular nozzles use nozzle inserts, which were arranged as shown in Fig.1
(right) and which cover the grinding wheel width of 20 mm. In the case of the needle
nozzle, a similar basic body was manufactured, which holds thin tubes with a diameter
of 2 mm along a width of also 20 mm. With the help of the different outlet cross-sections
of the individual nozzle cores or the tubes, it was possible to realise an identical outlet
cross-section, whereby the same jet ßow velocity of 35 m/s can be set. When designing
the nozzles, it was ensured that the ßow speed corresponded to the peripheral speed of
the grinding wheel, as studies have shown that a ßow speed of the grinding ßuid adapted
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to the peripheral speed of the grinding wheel has a positive inßuence on the grinding
result.

1,5 D
30°

h

D

3/4 D

Fig. 1. Reference nozzles used; left: Needle nozzle; middle: Modular nozzle; right: Rouse-nozzle
proÞle based on Rouse et al. and Webster et al. [12, 13]

For the ßow-optimised nozzle, the design was based on that of Rouse [12]. Accord-
ing to Rouse, the nozzle shape, shown in Fig.2, was Þrst developed in connection
with Þre extinguishing systems. The concept of the round nozzle shape was then sub-
sequently transferred by Webster to a two-dimensional square nozzle for ßuid supply
during grinding [14].

A typical MWF nozzle is characterized by abrupt local changes in cross-section
(tapering). This means that the stream of the ßowing media is prone to local high degree
of turbulence and loss of pressure, which has a considerable effect on jet coherence. In
contrast, the transitions in the cross section of a Rouse nozzle are smooth. This shape
prevents the formation of turbulent boundary layers and thus reduces the risk of stalls.
Studies have shown that the Rouse nozzle is very efÞcient compared to other nozzle
shapes, as it allows to produce the longest coherent jet [13].

The positive effect of honeycomb structures and guiding elements on a ßow has
already been shown in earlier investigations [13]. In order to examine the inßuence of
these structures in front of a cooling lubricant nozzle, a variant of the Rouse nozzle
with a honeycomb structure was investigated (see Fig.3). According to Loehrke and
Nagib, honeycomb structures must be long enough to redeÞne the velocity proÞle. At
the same time, however, the pressure loss increases with increasing length [15]. Studies
by Szolcek show that the lowest pressure loss can be generated at a length/diameter ratio
of about 4:1 [16]. Each honeycomb used in this work has a diameter of 1.5 mm. This
results in a total length of 6 mm for the honeycomb.

The additive manufacturing of the nozzles is carried out using the 3D printer ÒForm2Ó
from the company Formlabs. This printer works on the principle of stereolithography
(SL). The material used for printing was a glass-reinforced resin, which has an increased
tensile modulus of 4000 Pa and a high surface quality, which has a positive effect on
the roughness of the nozzles. The nozzles were printed with the lowest layer height of
50 µm in order to print as smooth a surface as possible. The printed nozzles were then
cured under UV light to further enhance the mechanical properties.
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Fig. 2. Sketch of the investigated nozzles: a) 3D-printed nozzle; b) 3D-printed nozzle with
honeycombs; c) modular nozzle; d) needle nozzle

2.2 Experimental Setup and Analysis

In order to evaluate the manufactured nozzles in the grinding process, surface grind-
ing tests were carried out in which the nozzles supply the metalworking ßuid. The
experimental environment with the process parameters is shown in the following Fig.3.

Process:Surface grinding of a groove
Workpiece: AISI4140 (42CrMo4)
(HRC 52) Hardened and tempered
L x B x H = 150 x 40 x 30 mm
Tool: Corundum grinding wheel
Diameter = 400 mm; Width = 20 mm
Dressing:Dressing roller
qd = 0.8
MWF supply: Oil (75 l/min)
Process parameters:up-hill grinding
vs= 35 m/s ; ap = 20 mm
ae= 50 - 500 µm; vft = 2.0 m/min

Dressing Roller
Grinding Wheel

vs

MWF nozzle

WorkpieceMagnetic plate

vft

Force measuring plate

Fig. 3. Experimental environment including process parameters

The nozzles were all positioned at an angle of 10¡ and a distance of 100 mm from
the point of contact between the workpiece and the nozzle outlet. The needle nozzle
represents an exception. The needle nozzle was positioned at a distance of 20 mm in
order to take into account the advantage of the extremely good accessibility due to the
thin tubes in the investigations.

To evaluate the resulting forces in the grinding process, the tangential and normal
forces were recorded during the process with the use of a measuring force plate under the
workpiece to be ground. The required spindle power, which is also used as a parameter
for assessing the nozzles, was obtained directly from the spindle.

The presence of thermal damage was deÞned as the process limit of the respective
nozzles, which was identiÞed by the Barkhausen noise measurement. This method is
suitable due to the fact that the micromagnetic signal to characterize the surface and
subsurface integrity of the ground workpiece surface is strongly dependent on material
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modiÞcations, such as yielding and phase transformations due to thermomechanical
inßuence, and is therefore able to identify grinding burn [17]. For this purpose, it was
Þrst necessary to identify the reference value range for thermally undamaged samples
on the basis of reference samples (only pre-machined and heat-treated). In addition,
selected metallographic examinations were carried out to validate the Barkhausen noise
measurement.

3 Results and Discussion

In this section, all aspects of the examined nozzles are discussed in order to compare
them. At the beginning, variables such as the required pressure and the associated pump
power were looked at regardless of the grinding process itself, which are needed to set
the required jet parameters.

Afterwards, variables such as the resulting grinding forces, the process limits and the
required grinding power are compared with each other. With the help of the measured
values, a comparison can be made with regard to energy efÞciency, which makes it
possible to evaluate the nozzles.

The recorded pressures and pump powers when using the respective nozzles are
shown in the following Fig.4.
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Fig. 4. Required pressure and pump power at the nozzle for each nozzle and process limits for
the different nozzles

It is evident that the highest pressure and correspondingly the highest pump power
is required for the needle nozzle. Due to the optimised nozzle geometry, the 3D printed
nozzles require less energy to achieve the required jet velocity of vs = vjet = 35 m/s with
the identical outlet cross-sections. As expected, the use of honeycombs in the 3D printed
nozzle requires increased pressure and pump power. This behaviour was to be expected,
as an increased resistance due to the small channels occurs in the form of higher wall
friction effects, similar to the small channels of a needle nozzle.

To determine the process limit of the respective nozzle, the depth of cut ae was
increased further and further until a thermal inßuence occurred. In Fig.4, the pro-
cess limits are plotted evaluating the measured Barkhausen noise. A strong increase
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of the magnetic parameter (MP) value is a Þrst indicator of thermal inßuences, as the
magnetization process is inßuenced by structural changes. In this paper an undamaged
workpiece has an MP value of 20. A value above this limit provides evidence of Þrst
thermal inßuences on the microstructure.

When considering the process limits, it becomes clear that the reference nozzles and
the use of honeycomb structures are beneÞcial. Despite the increased energy requirement,
the straightening of the ßow through the honeycomb structures leads to an increase in
the performance of the grinding process.

Figure5 illustrates the resulting process forces and the spindle powers using the
considered MWF nozzles.
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Fig. 5. Comparison of the process forces and spindle power of the investigated nozzles

The process forces and spindle power turn out to be lowest with the needle nozzles
while at the same time requiring the highest pressure and pump power. In addition, the
use of a honeycomb structure has a negative effect on the process forces. Compared to the
needle nozzle, the use of the printed nozzle produces similar process forces, but requires
a higher spindle power. The highest speciÞc material removal rates (12 mm2/mm s)
without thermal damage can be achieved with the needle and modular nozzle.

Based on the knowledge gained, the speciÞc energy for all nozzle concepts used
was determined. The extended approach, which was applied in the context of this work,
includes not only the spindle power (Pc) but also the power from the ßuid supply pump
(Pcl) and the base power of the grinding machine (Pbp) (constant at 2kW) (see Eq.1),
whereby the entire grinding process is covered and a realistic consideration of the energy
consumption can be done [9].

etotal = ec + ebp + ecl =
Pc

Qw
+

Pbp

Qw
+

Pcl

Qw

�
W · s
mm3

�
(1)

Another aspect is the achievable process limit, which strongly depends on the process
input variables (tool and process parameters) or the process control. Thus, an evaluation
of different ßuid supply concepts can be carried out when using a decentralised ßuid
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supply. The diagrams of the speciÞc energy (energy efÞciency diagrams) elaborated serve
to evaluate the investigated nozzle designs and different materials with regard to their
achievable process limit, the energy consumption required for this and with regard to the
resulting energy efÞciency of the entire grinding process. An external power analyser
of the type WT500 from YOKOGAWA was used to measure the grinding power at
the grinding spindle. Also the power for the ßuid supply was measured directly at the
frequency converter of the supply pump (Fig.6).
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Fig. 6. SpeciÞc total energies for all examined nozzles

Despite the high pump power requirement using the needle nozzle, which has already
been demonstrated, the speciÞc energies are equivalent to those of the modular nozzle
and the 3D-printed nozzle with honeycomb. This is due to the efÞcient cooling and
lubrication during the grinding process, which ensures that a lower spindle power is
needed. In comparison to the reference nozzles, the 3D-printed nozzle allows the most
energy-efÞcient use, whereby the process limit is the lowest.

4 Conclusions

In this work, it was shown that 3D printing can be used to create efÞcient MWF nozzles.
With the help of 3D printing, it was possible to produce the internal geometry ßow-
optimised to the respective grinding task. In particular, the use of ßow straightener in the
form of honeycomb structures can have a signiÞcant positive inßuence on the jet shape
in the case of extremely turbulent ßow into the nozzle. However, it was also shown that
the use of needle nozzles provides the best positive effect on the spindle power during
the process. For this reason, when choosing the nozzles, it must be decided whether an
energy-efÞcient process approach is desired or whether the process limit needs to be
increased.

In addition to these investigations, other materials such as metal are part of the focus
of future work as well as their effect on achievable roughness within the nozzle and
the wear resistance in long-term use due to their different material properties. Within
the scope of the presented work, only surface grinding has been considered so far. With
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the help of the large number of degrees of freedom in 3D-printing, far more complex
nozzle geometries and outlet cross-sections can be produced, which is why other grinding
processes, such as proÞle or tool grinding, are to be considered in the future, in order to
further utilise the potential of 3D printing for the production of MWF nozzles.
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Abstract. In machining processes, system-immanent process vibrations
lead not only to lower surface quality of workpieces but also to the
degradation of the machine and tool wear. E�ectively minimizing pro-
cess vibration amplitudes without costly software or hardware add-ons
is a research topic that demands further investigation. In this regard,
this article focuses on the further development of a holistic milling pro-
cess model as well as the experimental and simulation-based vibration
analysis. The interaction between the nonlinear behaviors of the cas-
cade controlled electric motors and the process parameters are practically
evaluated. Moreover, based on the experimental and simulation results,
a correlation analysis of the machine control parameters and the process
vibration amplitude has been implemented.

Keywords: integrated simulation system · machining · process
vibration · cascade control

1 Introduction

To meet the demands of shorter product life cycles and higher quality require-
ments, considerable ”exibility and dependability in manufacturing are required
on an ongoing basis. Furthermore, product complexity and the number of prod-
uct varieties are increasing as markets and production become more globalized.
The use of new manufacturing technologies, as well as their digitization and
automation, has become critical in this respect. Using simulation technology, in
particular, is becoming increasingly important across the product life cycle. Mod-
eling complex systems, such as machine tools and machining processes, improves
production and product development e�ciency in terms of both time and cost.
Particularly, the need for a trial-and-error process to test a novel approach on
actual process and machinery is replaced by simulation. The implementation of
more sustainable manufacturing practices can be therefore facilitated.

In this work, a simulation model predicting cutting forces and milling process
vibrations has been constructed and experimentally veri“ed in order to analyze
c� The Author(s) 2023

H. Kohl et al. (Eds.): GCSM 2022, LNME, pp. 12–20, 2023.
https://doi.org/10.1007/978-3-031-28839-5 _2
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the dynamic behavior of milling processes with varied parameters. The milling
process model, when combined with the model of the cascade controlled feed
drives, allows for a more comprehensive investigation of the nonlinear dynamics
of AC electric motors and the mechanical vibrations of machining processes.
Subsequently, a correlation study of the control parameters and the process
vibrations has been performed based on the experimental and simulation results.

2 State of the Art

First, based on the literature, the current state of research on modeling cutting
forces and vibration in machining operations, is brie”y presented in this part.
Second, various techniques of reducing process vibrations are characterized and
compared.

2.1 Cutting Forces and Vibration Modeling

Analytical approaches are used to calculate the forces and vibrations generated
by the machining operations. The depth of cut in the simulation techniques in
[1,2] was calculated by taking into account both the static and dynamic com-
ponents resulting from the tool geometry and process kinematics, as well as the
dynamic vibrations. By converting forces into cutting edge coordinates for turn-
ing, drilling, and milling procedures, Kaymakci et al. established a uni“ed cutting
force model in [3]. Smith and Tlusty [ 4] introduced the time marching methods
for simulating process states at discrete time periods. The time-discrete estima-
tion of cutting forces for “ve-axis milling operations was veri“ed by Lazoglu et
al. in [5]. In the time-domain simulation system with improved computing time
in [6], a model of chip formation of each tooth feed was developed utilizing the
CSG (constructive solid geometry) modeling method. For a more comprehensive
assessment of virtual systems of machining processes, the reader is directed to
the literature [ 7].

2.2 Process Vibration Reducing Techniques

Munoa et al. gave a critical review of the evolution of each approach and the rele-
vant industrial application while demonstrating several chatter reduction strate-
gies in [8]. Modifying the process parameters and the spindle speed based on
the stability lobe diagram (SLD) is one technique to reduce chatter. Intensive
research on process stability utilizing SLD has been undertaken over the last 15
years, including process damping modeling [9], thin wall machining [ 10], multi-
task operations [11], SLD accuracy enhancement [12], and new ways for mon-
itoring dynamic parameters [13]. Spindle speed variation methods are another
e�ective way for decreasing chatter. These strategies focus on adjusting the tool
cutting edge passing period to vary the period between the modulations, as the
modulations in chip thickness induce regenerative instability [8].
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Despite many methodologies and applications for modeling machining pro-
cesses, understanding of the relationship between motion control parameters and
machining process dynamics remains restricted. Furthermore, minimizing pro-
cess vibrations and, as a result, optimizing the process outputs without extra
costly software or hardware change is a study issue that requires further inves-
tigation. In comparison to external software solutions, an independently built
simulation model of the machining process with integrated motion control simu-
lation allows for greater ”exibility for fundamental scienti“c research. Moreover,
it enables a more thorough assessment of the assigned variables and applied
functions. Last but not least, the established model allows for the reproducible
investigation of interdependencies between control and process parameters in an
enclosed system.

3 Milling Process Modeling with Cascade Control

The speci“cally developed simulation system [14] is used to investigate the in”u-
ence of control parameter variation on the process vibration amplitudes. The
schematic structure of the model is shown in Fig.1.

The NC-“le is initially converted into a matrix consisting of discrete time
steps, the set coordinates of the tool path, the spindle speed, the feed rate as well
as the logical values for the cutting operation. The motion control model receives
the position coordinates as input for the cascade control. Subsequently, with the
assistance of the con“gured PMSM (Permanent-Magnet Synchronous Motor)
model and the model of torsional oscillators as the analytical representation of
the mechanical elements, the actual position values are calculated and sent to the
two dimensional process sub-model. In the process sub-model, the chip thickness
is calculated as the distance between the instantaneous cutting edge and the
semi-“nished workpiece polygon contour at each time step. By subtracting the
simulated chip polygon, the workpiece geometry is incrementally updated. Based
on the Kienzle formula, the process forces and load torques are calculated and
fed back to the PMSM model. The output vibration amplitudes are generated
from the mechanics model, which contain the forced vibrations resulted from the
periodically varying cutting forces computed in the process sub-model. These are
plotted and analyzed for the model validation in Sect.4.2.

4 Experimental Results and Model Validation

In order to verify and validate the simulation model presented in Sect.3, exper-
imental tests have been carried out at the Institute of Resource and Energy
E�cient Production Systems at the Friedrich-Alexander-Universit¨ at Erlangen-
Nürnberg in Germany. In this section, “rstly, the experimental setup of the
milling process vibration measurement is speci“ed. Subsequently, the simulation
results of the milling process model with di�erent motion control con“gurations
are veri“ed by comparing to the experimental results.
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Fig. 1. Schematic structure simulation system

4.1 Experimental Setup

A series of milling operations has been performed in the DNM 500 vertical
machining center fabricated by Doosan Machine Tools Co., Ltd. The work-
piece clamping setup and its schematic representation are shown in Fig.2a and
Fig. 2b respectively. The workpiece composed of stainless steel X2CrNiMo17-
12-2 measures 60 mm in length and width. The milling cutter used is a corner
milling cutter from Walter AG, model M4132-040-B16-05-09, with “ve inserts
SDMT09T320-F57 WSP45S. The machine vice is turned 45� C clockwise to
examine the coordinated motion control of the two feed axes using a predeter-
mined straight milling tool path. The tri-axial acceleration sensor W356B11/NC
and the Apollo light measurement system are used to record the vibration ampli-
tudes during the milling process.

Fig. 2. Experimental setup
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4.2 Comparison of Experimental and Simulation Results

The process parameters selected both in the experimental and simulated milling
process are listed in Table1. In Fig. 3, a 0.3-second section of the time sequence
of the vibration amplitudes is extracted for the visualized comparison of the
experimental and simulation results. The thick lines in solid red and long-dashed
blue represent the envelopes of the vibration signals practically measured and
simulated respectively. Using Fast Fourier Transform (FFT), the corresponding
spectral analysis of the vibration signals up 200 Hz is shown in Fig.4. It can be
observed that the simulation result to a great extent agree with the experimen-
tal result. The tooth passing frequency, which is proportional to the rotational
frequency of the spindle, can be clearly identi“ed in the experimental and sim-
ulation signal spectra, at 66.1 Hz and 65.6 Hz respectively.

Table 1. Process parameters

Parameter Value
Feed rate 398 mm/min
Feed per tooth 0.1 mm
Spindle speed 796 rpm
Depth of cut 2 mm
Cutting width 8 mm Fig. 3. Comparison experimental and simu-

lation results

Fig. 4. Spectral analysis vibration amplitudes

In order to further verify the plausibility and validity of the motion control
sub-model, the process vibration behavior under various position controller con-
“gurations has been practically and simulationally evaluated. For each variation
of the proportional gain factor K v , the root mean square (RMS) of the vibration
amplitudes over the complete milling process is calculated and compared (see
Fig. 5). Fifteen experimental iterations have been carried out respectively with
K v = 6 , 11, and 20. The corresponding standard deviations are demonstrated
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as error bars in the diagram. Based on the reproducibility of the simulation
results, the standard deviations of the simulated vibration amplitudes remain
zero. The simulation model and the experimental tests yield comparable results
with percent errors between 1 to 5%. Both experimental and simulated results
indicate that a higher K v -value, representing a more dynamic motion control
con“guration, lead to more active vibration behavior.

Fig. 5. Comparison RMS with K v = 6 , 11, 20

5 Correlation Analysis of Control Parameters
and Vibration Amplitudes

In this section, the validated simulation model is implemented to e�ciently eval-
uate the correlational relationship between the motion control parameters and
the process vibration behavior. The process parameters utilized for executing the
simulation are identical as listed in Table1. The examined control parameters in
this paper are the proportional gain factor of the position controller K v and that
of the P-part of the speed PI controller K p. In the “rst test series, the K v -value
has been con“gured from 1 to 20, with a sampling interval of 1, where the speed
controller remains unchanged, with K p = 9, and the reset time of the I-part
Tn = 0 .004. Analogously, in the second test series,K v and Tn remain constant,
with the values of 6 and 0.004 respectively, where theK p-value increases from
0.5 to 10, with an interval of 0.5. For each simulated milling process, the RMS
of the process vibration amplitudes is calculated. The simulation results of the
“rst and second test series are shown in Fig.6a and Fig.6b. It can be observed
that both vibration- K v and vibration- K p curves are monotonic. To quantify the
monotonic correlational relationship between two variables, the Spearman•s rank
correlation coe�cient r s is calculated according to Eq. (1)

r s =
cov(R(X ), R(Y ))

� R (X ) � R (Y )
, (1)

where cov(R(X ), R(Y )) is the covariance of the rank variablesR(X ) and R(Y),
� R (X ) and � R (Y ) are the standard deviations of the rank variables [15]. The value
of r s for the variables vibration amplitude and K v -factor equals 0.989, demon-
strating a very strong positive monotonic correlation. On the other hand, r s for
vibration amplitude and K p-factor indicates a very strong negative monotonic
correlation, with the value of …1.
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Fig. 6. Simulation results process vibration RMS

6 Summary and Outlook

This paper proposes a novel milling process model integrated with motion con-
trol simulation with electrical feed drives. The interactions between the nonlinear
behaviors of the electrical motors and the milling process vibrations are com-
putationally reproduced. The functionality and the accuracy of the simulation
model have been veri“ed by conducting multiple experimental tests. The results
demonstrate that the simulation model accurately calculates the tooth pass-
ing frequency with a margin of error of less than 1%. The RMS of the process
vibration amplitudes features percent errors less than 5%. Moreover, based on
the Spearman•s correlation method, the correlational relationship between the
control parameters, K v and K p, and the process vibrations is identi“ed as very
strong monotonic. The focus of future study will be on the improvement and
the extension of the simulation model for a more comprehensive representation
of the physical machine tool, especially for the computation of a wide-spectrum
and high-resolution spectral analysis of the process vibration signals. A model
extension into the third dimension with prediction of the surface “nish of the
workpiece is inevitable for the computation of the self-excited chatter vibrations.
Furthermore, a thorough investigation on the con“guration of vibration-reducing
control parameters should be carried out.
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Abstract. Cutting ßuids used in machining have received a lot of attention due
to their adverse environmental and economic effects. Researchers have studied
cutting ßuid usage in traditional machining processes such as turning, facing,
milling, etc. However, few studies focused on the cutting ßuid used in band sawing
applications. This study reports a literature review of the usage of the cutting
ßuid in band sawing and their sustainable and economic aspects. A review of
the literature and industrial data has shown that the majority of band saw blades
use high-speed steel as the cutting tool material for cutting metal. This study
presents a metric-based sustainability assessment and a detailed analysis of recent
economic factors such as the cost of the cutting ßuids used in band sawing through
industrial case studies. A global survey of the cutting ßuid usage in the bandsawing
application has shown that the majority of the industry is employing ßood coolant
application. The ßood coolant application cost can be as high as 8% of the total
consumables cost of the band sawing process.

Keywords: Band Sawing· Sustainability· Cutting Fluid

1 Introduction

While cutting ßuids are a small part of the machining process, they are of particular
interest when studying the sustainability of those processes. Cutting ßuids may contain
components that are harmful to both the environment and workers exposed to them.
Mist coolant and lubrication systems can be especially harmful due to their aerosolizing
effects. Special care must be taken to select the proper ßuid and reduce worker expo-
sure. In terms of sustainable machining processes, another area of interest that is often
neglected is waste management. Cutting ßuid requires a hazardous waste ßuid stream in
order for it to be properly disposed. In plants that include other sources of waste ßuid,
this is not a signiÞcant issue. However, many bandsaw users do not have other ßuid waste
sources beyond small volumes of hydraulic oil. Specialized handling can add signiÞcant
cost to use and Þnancial incentives for improper disposal.

In traditional machining, cutting ßuid has been an active area of study for many years
[1,2]. Researchers have studied sustainable solutions for traditional machining processes
such as minimum quantity lubrication [3], targeted cutting ßuid application [4Ð8], and
cryogenic application [9]. However, studies investigating cutting ßuid in band sawing
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have been very limited. Further, band saw cutting ßuid sustainability, and economics are
almost entirely unexplored. Band sawing differs signiÞcantly from traditional processes,
making lesson carry over between sawing and traditional machining difÞcult. Band
sawing has a lower depth of cut than traditional machining [10Ð12]. The combination
of small depth of cut, multi-tooth interrupted cutting, and high-speed steel (as tool
material) in bandsawing has produced accelerated edge wear. In order to reduce the
edge wear, ßood coolant is predominately used in the band sawing process irrespective
of the workpiece material. MQL (minimum quantity lubricant) mist system are popular
in the industry for cutting structural workpieces (I-beam, tubes etc.) as the ßood system
causes clutter and has potential safety hazards [9]. The mechanics of sawing make
sustainability-focused innovations like targeted ßuid and through tool coolant difÞcult
or impossible.

2 Literature Review

For traditional machining processes such as turning, facing, milling, drilling, grinding,
researchers have investigated the effectiveness of the cutting ßuid on machining per-
formance metrics such as tool life, surface Þnish, machining induced surface residual
stresses, and economics, etc. [1Ð3, 13]. In contrast, the overall number of peer-reviewed
papers for bandsawing applications is far fewer than traditional manufacturing pro-
cesses. A review of the published literature is shown in Table1, shows that the effects
of the cutting ßuids were not studied until recently. Sawing has a long and storied his-
tory stretching back to at least the ancient Egyptians who made hardened bronze saws.
Somewhat unexpectedly, sawing of ferrous metals has existed for more than 140 years.
Grimshaw, in his 1880 essay on saws, discusses the recommended saw type and con-
ditions for wrought iron and steel beams [14]. Grimshaw discusses the lubrication of
saw blades with grease to prevent gumming or buildup of resin when sawing wood.
The 1880Õs literature also discusses the possibility of misted water to cool and lubri-
cate circular saw blades [14]. However, after that, experimental-based studies to Þnd
the effectiveness of the cutting ßuid while bandsawing have been minimal, as shown in
Table1. In his 1976 report, Taylor showed that using a ßow rate of 2 l/min and soluble
oil coolant allowed an increase in the production rate of 30% by increasing the feed rate
[15]. The same study found that cutting ßuid had minimal effect on useable band speeds
[15]. Soderberg et.alÕs 1983 experimental work to cut medium carbon steel, alloy steel,
and stainless steel with molybdenum-based steel tool tipped band saw blades, did not
study the effect of the cutting ßuids [16]. Their study found that sawing speed for bimetal
should be tuned to the highest speed where a BUE is still formed to protect the tooth from
the heat generated at the primary shear zone [16]. Soderberg et.alÕs 1986 experimental
study to determine tool tip wear mechanism with similar work material and different
tool tip material did not consider cutting ßuids [17]. Similarly, Doraisingam [18], Khan
et. al [19], Sarwar et. al [20], Thaler e. al [21], and Orlowski et. al. [22] experimentally
studied the effects of coatings, tool tip material while bandsawing different work piece
material without considering the usage of cutting ßuid. Other studies that reported usage
of the cutting ßuid while cutting materials such as Ti-7, Inconel 718, and medium carbon
steels, did not evaluate the effect of the cutting ßuids [23Ð26].
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Table 1. A literature review: experimental-based research in metal band sawing process

First author last name,
year

Material being
band sawed/cut

Band saw blade tip
material

Cutting Fluid (CF)
used

Grimshaw, 1880 [14] Wood, Metal, Bone
etc

Steel based tips Water to cool and
lubricate, grease to
lubricate

Taylor, 1976 [15] En44E M42 tool steel Soluble oil coolant

Sšderberg, 1983 [16] AISI 1045, AISI
4337, AISI 316

M2 tool steel Soluble oil with
water 1:5

Sšderberg, 1986 [17] AISI 1045, AISI
4337, AISI 316

M2, M35, and M42
tool steels

No mention of CF

Doraisingam, 2003 [18] Stainless Steels,
Tool steels

M42 tool steel No Mention of CF

Khan, 2009 [19] Ti-6Al-V Uncoated carbide tip No Mention of CF

Sarwar, 2009 [20] 17Ð7 SS, AISI
52100

M42 tool steel No Mention of CF

Asilturk, 2009 [27] AISI 4140 M42 tool steel Boron oil 20%

Litvinov,2011 [23] AISI 1045 M42 tool steel 10% emulsion-based
oil

Saglam, 2011 [24] AISI 1045, AISI
1060, AISI 4140

M42 tool steel 5% emulsion-based
semi synthetic

Khan, 2012 [28] Ti-17 TiAlSiN coated and
uncoated carbide

Flood coolant

Thaler, 2014 [21] St37 (DIN 17100) M42 tool steel No Mention of CF

Khan, 2014 [25] Ti-17 AlTiN Coated and
uncoated carbide

Flood coolant

Khan, 2019 [26] Inconel 718 Single tooth carbide Flood coolant

Orlowski, 2020 [22] 66Mn4 M71-C, and M42 tool
steels

No Mention of CF

Rakurty, 2021 [11] D2 Steel Uncoated carbide Dry, ßood coolant,
MQL and MQC

Rakurty, 2021 [10] A36 Steel M42 tool steel Dry, ßood coolant,
MQL and MQC

However, the recent studies by Rakurty et al. have shown that the cutting ßuid
amount, type, and workpiece geometry effects the performance of the band saw blade
[10, 11]. Their study focused on researching the effects of using sustainable solutions
in bandsawing solid and structural I-beam sections on tribological parameters such as
cutting forces, and cut surface characteristics. Cutting forces, surface roughness, tool
wear variations showed little correlation with different types of sustainable conditions.
The sustainable conditions studied in their work are dry, Minimum Quantity Coolant
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(MQC), Minimum Quantity Lubricant (MQL), and industry-standard ßood coolant [7,
8]. Based on the literature review, one can easily conclude that a comprehensive study
on the effects of cutting ßuids on band sawing is very much needed, and also, more
importantly, the effects of the sustainable solution need more attention and research to be
effectively used in the industry. One of the Þrst steps in developing sustainable solutions
in bandsawing process, an essential manufacturing process, is to review the cutting ßuids
used in the industry globally and use a metric-based approach to provide state of the
art report. A metric-based approach for evaluating the sustainability of manufacturing
processes, such as ProcSI, was developed and used in traditional manufacturing processes
[2, 29, 30]. The Process Sustainability Index (ProcSI) provides a quantitative assessment
for any manufacturing process [31].

Thus, in the study, along with a comprehensive literature review, a global survey is
conducted to report state of the art in the industry for evaluating the sustainability impact
of the cutting ßuids systems used in the band sawing.

3 Cutting Fluid Usage Band Sawing: Global Case Studies

3.1 Economic Analysis

To evaluate the global sustainability impact of cutting ßuid used in the bandsawing
industry, bandsaw users from four different countries (Indonesia, India, Northern Ire-
land, and the USA) were chosen. The case studies from Indonesia, India, and the USA
(California) use ßood coolant to cut both solids and structural cross-sections, whereas,
in Northern Ireland, they use MQL system to cut structural material. In the band sawing
industry, typically, the ßood coolant system uses a water-soluble cutting ßuid mixed at
a speciÞc ratio with water, whereas the MQL system uses unmixed oil (no water). For
the sake of brevity, in this survey, machine cost, workpiece geometry variation, cutting
tool type, and the conditions are not considered. All the data from this section of the
study is from the end users of The M. K. Morse Company. The saw blade [32] end users
provided the information such as coolant type, quantity, frequency of recycling, method
of recycling, etc., per year. Also, provided the time required to maintain the cutting ßuid
system and saw blade life, usage per year. Using the information provided by the saw
blade users, the following case studies are evaluated.

Typically, in the bandsaw industry, cutting ßuid costs are not considered when a jobÕs
manufacturing cost is evaluated/estimated. In this paper, the economic impact of cutting
ßuid in bandsaw industries is evaluated by comparing it to the cutting tool cost. This
study evaluates both direct and indirect costs associated with using cutting ßuids and
also cutting tools. The average annual cutting ßuid (direct and indirect cost) and average
annual cutting tool cost for the Þnancial year 2020Ð2021 were collected as part of the
survey for all four case studies. Figure1shows the manufacturing cost as a percentage of
cutting tool cost and cutting ßuid cost for all four case studies. As expected, the cutting
tool cost was over 90% of the total cost (cutting tool and cutting ßuid) for all four cases.
It is interesting to note that cutting ßuid costs were 8% of the total cost for the ßood
coolant users in India and California, whereas MQL user in Northern Ireland was just
2%. This difference is attributed to the economic beneÞts of using the MQL system.
MQL system typically uses 30Ð300ml/hr. of cutting ßuid, whereas ßood uses 4Ð6l/hr.



A Comparative Sustainability Assessment 25

of cutting ßuid. Further, MQL system users do not have any disposal/recycling costs
associated with it.

Despite using ßood coolant, the cutting ßuid cost is only 4% of the total cost for the
case study in Indonesia. On further investigation, it was found that the user in Indonesia
does not recycle/dispose of their cutting ßuid and hence does not have any cost associated
with it. Figure2 shows the cutting ßuid cost as a percentage of maintenance cost and
disposal cost. Cutting ßuid maintenance costs includes cutting ßuid costs, labor cost
associated with coolant maintenance, and water cost (applies to ßood only).
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Fig. 1. Manufacturing cost as a percentage of cutting tool cost and cutting ßuid cost
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Fig. 2. Total cutting ßuid cost as a percentage of maintenance cost and disposal cost

3.2 Sustainability Index (SI) Evaluation

An initial attempt was made to adapt the ProcSI technique to the bandsawing pro-
cess to evaluate the sustainability index of the ßood coolant and MQL systems used
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