Gutek, A.Moshokoa, S.P.Rajagopalan, M.2025-01-072025-01-072013-09-130166-8641 (P)1879-3207 (E)https://doi.org/10.1016/j.topol.2012.08.012https://hdl.handle.net/20.500.14519/1102It is shown that every compact zero-dimensional metric space X with either no isolated points or infinitely many isolated points has a complex shift. If X is a disjoint union of a compact infinite scattered metric space and the Cantor set then X has a real shift also. If X is a disjoint union of a nonempty finite scattered metric space and the Cantor set then X has no shift.3513-3518 PagesenAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/ShiftCantor setPrimitive shiftScattered spaceShifts on zero-dimensional compact metric spaces.Article