TUT DIGITAL OPEN REPOSITORY
Featured Items
Recent Submissions
Item Genetic characterization of Salmonella and Shigella spp. isolates recovered from water and riverbed sediment of the Apies River, South Africa.(IWA Publishing, 2016-04-18)Riverbed sediment is a vital component of river ecosystems and plays an important role in many geomorphological and ecological processes. However, when re-suspension occurs, pathogenic bacteria associated with sediment particles may be released into the water column, thus creating a health risk to those who use such water for drinking, household and recreational purposes. The aim of this study was to investigate the presence of bacterial pathogens Salmonella spp. and Shigella spp. in the Apies River and to ascertain whether there was any level of genetic relatedness between river water and riverbed sediment isolates of these pathogenic bacteria. A total of 124 water and sediment samples were collected from a site located on the Apies Rivers upstream of the Daspoort Wastewater Treatment Works, Pretoria, Gauteng, South Africa, between August and November 2014. In order to detect and identify the target bacteria, samples were analysed by culture-dependent and culture-independent techniques (quantitative real-time PCR). Genetic relatedness was established using Sanger sequencing of the invA gene of Salmonella spp. and ipaH of Shigella spp. Results of this study displayed the presence of the target bacteria both in the water and sediment of the river. The phylogenetic tree of Salmonella spp. revealed a ≥ 99% and 99% genetic relatedness between river water and riverbed sediment isolates for Salmonella spp. and Shigella spp., respectively. The degree of genetic relatedness between sediment and water pathogen isolates suggests that these organisms could possibly have a common origin and that there could be possible movement of microorganisms between the water column and the sediments.Item Riverbed sediments as reservoirs of multiple vibrio cholerae virulence-associated genes: A potential trigger for cholera outbreaks in developing countries.(John Wiley & Sons Ltd, 2017-05-11)Africa remains the most cholera stricken continent in the world as many people lacking access to safe drinking water rely mostly on polluted rivers as their main water sources. However, studies in these countries investigating the presence of Vibrio cholerae in aquatic environments have paid little attention to bed sediments. Also, information on the presence of virulence-associated genes (VAGs) in environmental ctx-negative V. cholerae strains in this region is lacking. Thus, we investigated the presence of V. cholerae VAGs in water and riverbed sediment of the Apies River, South Africa. Altogether, 120 samples (60 water and 60 sediment samples) collected from ten sites on the river (January and February 2014) were analysed using PCR. Of the 120 samples, 37 sediment and 31 water samples were positive for at least one of the genes investigated. The haemolysin gene (hlyA) was the most isolated gene. The cholera toxin (ctxAB) and non-O1 heat-stable (stn/sto) genes were not detected. Genes were frequently detected at sites influenced by human activities. Thus, identification of V. cholerae VAGs in sediments suggests the possible presence of V. cholerae and identifies sediments of the Apies River as a reservoir for potentially pathogenic V. cholerae with possible public health implications.Item Microbial remobilisation on riverbed sediment disturbance in experimental flumes and a human-impacted river: implication for water resource management and public Health in developing Sub-Saharan African countries.(MDPI, 2017-03-10)Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45◦ angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9–35.8 times original values. Using Shields criterion, river-flow of 0.15–0.69 m3/s could cause bed particle entrainment; while ~1.57–7.23 m3/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality.Item The Limpopo non-metropolitan drinking water supplier response to a diagnostic tool for technical compliance.(MDPI, 2017-07-14)Water services providers should supply water that is fit for human consumption, taking into account multi-barrier approaches and technical aspects such as design aspects, operation monitoring, final water quality compliance monitoring, plant monitoring practices, maintenance, and risk management practices. Against this background, this study focused on applying the diagnostic tool for technical compliance as well as assessing the compliance of water treatment plants with management norms. Six plants in the Vhembe District Municipality were selected; the Vondo, Malamulele, Mutshedzi, and Mutale plants (conventional), and the Dzingahe and Tshedza package plants. During the first assessment, four (Malamulele, Mutshedzi, Mutale and Dzingahe) plants scored between 44% and 49% and achieved Class 3 certification, revealing serious challenges requiring immediate intervention. Two water plants (Vondo and Tshedza, scoring 53% and 63%, respectively) were in the Class 2 category, revealing serious challenges requiring attention and improvement. During the second assessment, all plants scored between 63% and 87% (Class 2 category). The greatest improvement (30%) was noted for the Dzingahe and Tshedza plants, followed by the Malamulele plant, while the Mutale, Vondo, and Mutshedzi plants improved their scores by 20%, 17% and 14%, respectively. After corrective actions and re-measurement, no plant complied. It is recommended that Water Services Providers (WSPs) regularly apply the diagnostic tools and water safety plans as developed in order to comply with applicable standards.Item Non-Metropolitan drinking water suppliers’ response to the diagnostic tool for non-technical compliance in Limpopo, South Africa.(MDPI, 2017-10-12)Without the planning of non-technical issues, water treatment plants may face challenges in sustaining safe drinking water. Parameters such as the planning of financial resources, human resources, a lack of professional process controllers, poor working conditions, staff shortages and a lack of appropriate training of process controllers contribute to the underperformance of drinking water treatment plants. This study aimed at applying the Diagnostic Tool for Non-Technical Compliance to assess the compliance of small drinking water plants with management norms. Six water treatments (Vondo water scheme, Malamulele, Mutshedzi, Mutale regional water treatment plant, Tshedza and Tshedza package plant) were selected from the Vhembe district municipality of the Limpopo province in South Africa. From the abovementioned non-technical parameters, the results showed that during the first assessment period (August 2008 and June 2009) selected water treatment plants scored between 53% and 68% and fell under Class 2, indicating serious challenges requiring attention and improvement. During the second assessment period (November and December 2010), a slight improvement was observed as all plants scored between 72% and 80%, falling under the Class 2 category. Even after corrective actions and remeasurement, none of the plants met the compliance standards, which range from 90% to 100% to obtain the Class 1 compliance standard. The study recommended that tactical and strategic plans that clearly define the operational procedures, process controlling, financial planning, maintenance culture, emergency preparedness and regular monitoring and evaluation should be entrenched for the smooth running of the small water treatment plants. Furthermore, all water services providers and water services authorities should apply the diagnostic tools as developed, which provides guidance on a stepwise procedure on plant operations and management on a daily basis.
Communities in TUTDoR
Select a community to browse its collections.
